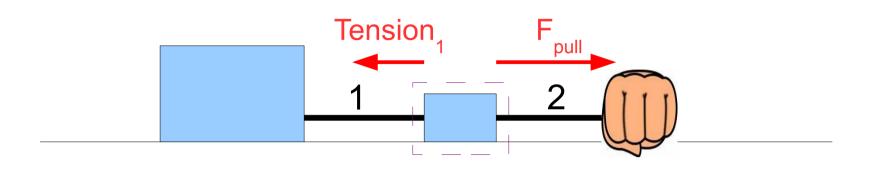
NEWTON'S THIRD LAW

"External" vs. "Internal" Force

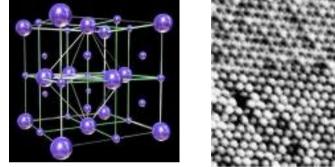
- <u>External</u> Force:
 - Exerted on the system by something outside the system
- Internal Force:
 - Exerted by one part of the system on another part
- Newton's Second Law:

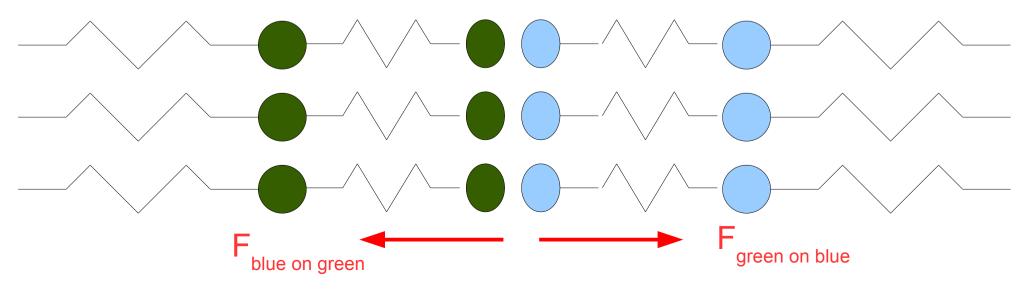

$$F_{net} = ma$$

- Where F_{net} is the net <u>external</u> force on the system
- So only external forces can produce acceleration
- You can't pick yourself up by your bootstraps!

<u>"External" vs. "Internal" Force: An Example</u>

- Let our "system" contain both blocks and rope 1
 - We are free to choose any objects we want to make our system (the boundaries are created by our imagination)
- Hand pulls on rope 2, causing system to accelerate
 - Hand does <u>NOT</u> pull on rope 1 directly!
 - Tension in rope 1 is an internal force
 - The external force F_{pull} accelerates the system

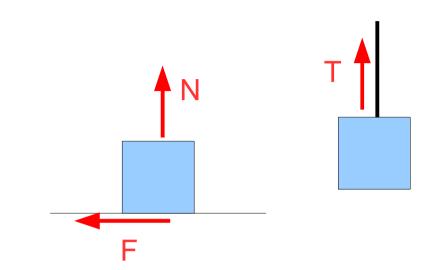

"External" vs. "Internal" Force: Another View


- Now let our "system" contain only the small block
 - Now the tension in rope 1 is an <u>external</u> force
 - F_{pull} and Tension₁ can be combined into a <u>net</u> force
 - <u>Newton's 2nd Law</u>: Find the small block's acceleration
- No matter what we choose to use as our system, Newton's Laws provide a single, <u>consistent</u> answer for acceleration!

Forces at the Atomic Level

 Atoms in matter push (or pull) on each other as if they were connected by springs:

 When objects are in contact, the "springs" between the atoms in both objects compress (or stretch)

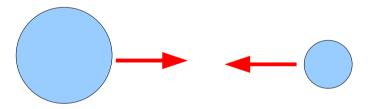


"Action" and "Reaction" Forces

- It is impossible for atoms to <u>exert a force</u> without <u>having a force exerted</u> back on them
 - "Action Force" Object A pushes on Object B
 - "Reaction Force" Object B pushes back on Object A
- Forces always come in pairs!
 - One force is external exerted on the system
 - One force is internal exerted by the system
- Deciding which force is the "action" and which is the "reaction" is arbitrary

Forces in our Everyday Experience

- Atomic Forces
 - Normal Force
 - Tension
 - Friction



- Gravity
 - Weight of objects
 - Orbits of planets and moons
- Gravity also obeys the "action/reaction pair" rule

- So <u>every</u> force has a reaction force!

Newton's Third Law

- "Every action has an equal and opposite reaction."
 - The strengths of the action/reaction pair are equal
 - The directions of the action/reaction pair are opposite

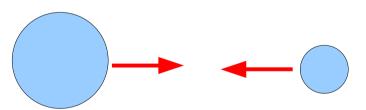
- If A exerts a force on B, then B exerts an equal and opposite force back on A
 - This law allows us to understand interactions and collisions between objects

Newton's Third Law Example

• Throw a rock off of a cliff

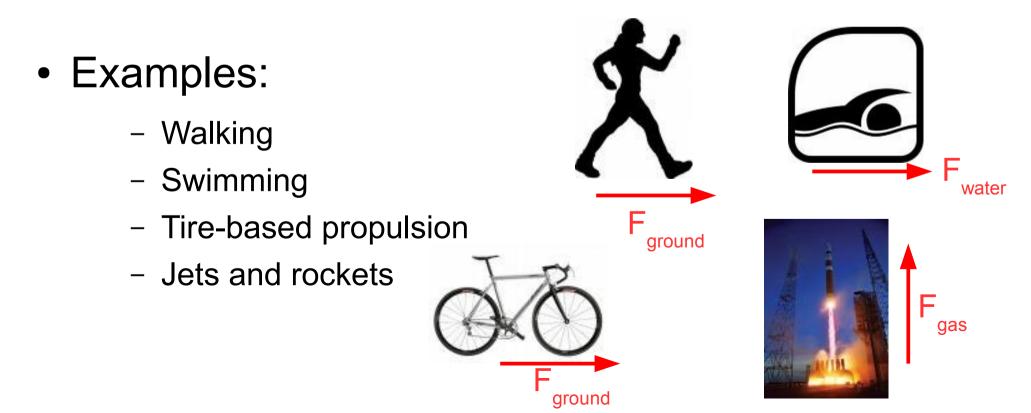
• While the rock falls, gravity pulls down on it

- What is the <u>reaction</u> force to this action?

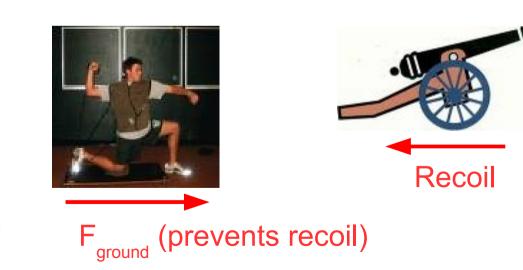

- <u>Answer</u>: Rock pulls <u>up</u> on Earth!
 - Action: Earth on rock (down) Reaction: Rock on Earth(up)
 - Earth moves only a tiny bit because of its huge mass
 - Still, rock has its own gravity (very weak!)

Newton's Third Law and Orbits

- Consider a smaller object orbiting a larger one:
 - Moon orbiting around planet
 - Planet orbiting around star


• Newton's Third Law:

- The larger object will <u>not</u> stand still!
- Instead, it will "wobble" as the smaller object pulls on it
- Astronomers have discovered "extrasolar planets" by looking for wobbling stars


<u>Newton's Third Law – Moving Yourself</u>

- For a system is to propel itself forward:
 - The system must have a forward external force on it
 - <u>Newton's Third Law</u>: A forward external force can be created by pushing <u>backward</u> on something else

Propelling Something Else – Recoil

- To propel any object, a <u>forward</u> force must be exerted on it
 - This means it exerts a backward force
 - Sometimes the object doing the forward pushing will be held in place by another force, otherwise it will <u>recoil</u>
- Examples:
 - Throwing
 - Firing a projectile

<u>Summary</u>

Every action has an equal and opposite reaction

 One force is exerted <u>on</u> the object, the other force is exerted <u>by</u> the object

• The masses of the objects determine how they move due to the action/reaction pair of forces