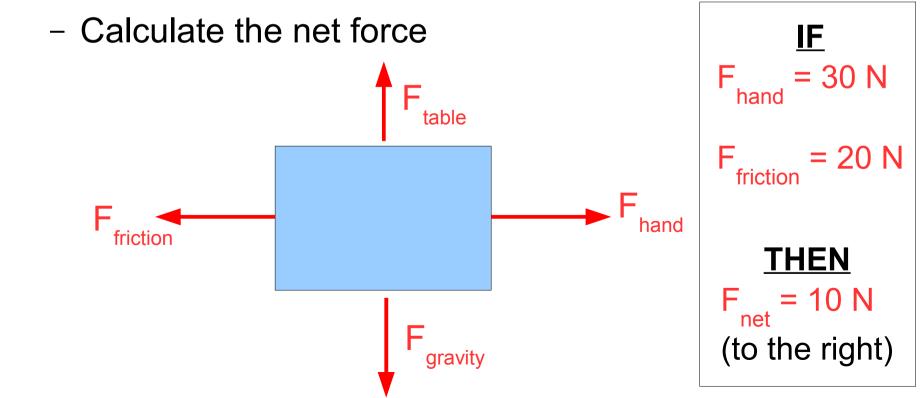

NEWTON'S SECOND LAW

Net Force and Acceleration


- According to Newton:
 - A constant velocity is the "natural state" of motion
 - To <u>accelerate</u> a physical system requires a <u>force</u>
 - The amount of force required to accelerate a system depends on the <u>mass</u> of the system
- <u>The catch</u>: A system can have more than one force acting on it
 - But it can only have <u>one</u> acceleration!
 - We must somehow combine all the forces into one
 - This total force is called the "net force"

Free Body Diagrams

- Standard procedure for finding F net
 - Draw the physical system
 - Draw all the forces acting on the system

Newton's Second Law

• F_{net} causes acceleration according to the following equation:

$$a = \frac{F_{net}}{m}$$
 OR $F_{net} = ma$

• Notice the units:

$$1N = (1kg)(1\frac{m}{sec^2})$$

We now have a definition for a Newton in terms of mass, length, and time!

Newton's Second Law – Example

• Tug-of-war (total mass of kids = 100 kg)

20 N ·

• Net Force = 25 N - 20 N = 5 N (to the right)

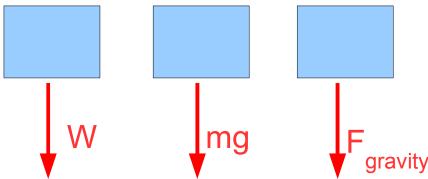
$$a = \frac{F_{net}}{m} \qquad \qquad a = \frac{5N}{100 \, kg} = 0.05 \, \frac{m}{sec^2}$$

Common Obstacles (Watch Out!)

- F_{net} is a sum of all the forces acting on a system
 - It is <u>not</u> a force by itself!
 - You should not draw F_{net} on your free body diagram
- F_{net} only comes from <u>external</u> forces
 - You should not include internal forces in your diagram
 - <u>Example</u>: When drawing a free body diagram for your car, don't draw the force between the seat and the driver
- Objects moving <u>at constant velocity</u>
 - F_{net} must be zero! (Even though object moves)

Mass and Weight

• There is a difference!


- Mass describes how much matter is in a system
 - Measured in kilograms (<u>NOT</u> pounds!)
 - A physical system's mass is always the same no matter where or when it is measured
- <u>Weight</u> is the force that gravity exerts
 - Measured in Newtons (or pounds)
 - The weight of a system depends on the strength of gravity your weight is different on the moon

The Force of Weight

- From "free fall" experiments, we know:
 - Gravity accelerates objects downward at $g = 10 \text{ m/sec}^2$
 - Gravity is the only force acting in free fall
- So, using Newton's Second Law:

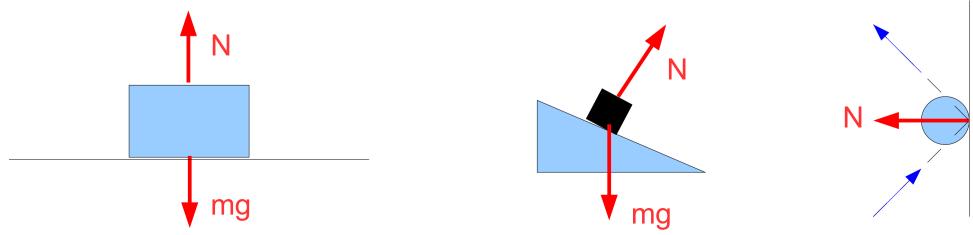


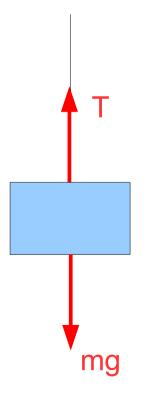
• In free body diagrams:

Mass and Weight – Units

- It is common to see kilograms and pounds used interchangeably to describe an object
 - This is not technically correct!
 - Kilograms are a unit of mass
 - Pounds are a unit of <u>weight</u> (like Newtons)
- An object that weighs 100 lb
 - Will also weigh about 450 Newtons
 - Has a mass of about 45 kg
- The English unit of <u>mass</u> is called a "slug"

Mass and Weight – Example


- Two bricks one made of lead and one made of styrofoam
 - Very different masses
 - Lead brick much harder to lift and shake
- "Thought experiment" go to the moon with the bricks
 - Now the lead brick is easier to lift than it was on earth
 - However, it is just as difficult to shake as it was on earth


The "Normal" Force

- Objects are usually supported by a surface
 - Floor, table, ground, shelf, etc.
 - Surface must exert a force to balance the weight of the object
- The Normal Force
 - "Normal" means "perpendicular to a surface"
 - This force is created when atoms in a surface are pressed together (they push back on the object)
 - Normal force also exists during collisions

<u>Tension</u>

- Ropes and cables are useful for exerting <u>pulling</u> forces
 - Note that they are incapable of <u>pushing</u> \rightarrow one-way force!

The molecules in the rope are "stuck together"

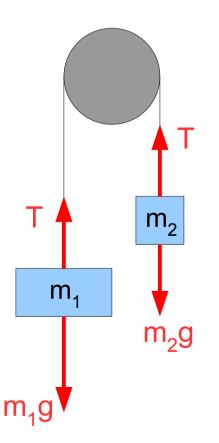
When an outside force pulls them apart \rightarrow they pull back...

...until the rope breaks!

This force is called tension in the rope

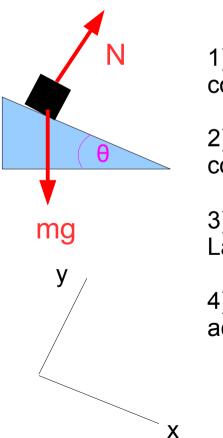
<u>Note</u>: Could not support the brick's weight from below with a rope \rightarrow ropes can't exert <u>normal</u> forces

Simple "Machines"


Pulley

Used to change the <u>direction</u> of a force

1) draw free-body diagram(s)

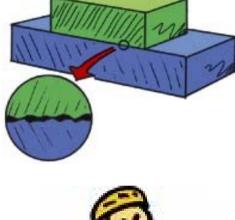

2) apply Newton's 2nd Law

3) calculate acceleration of system

Inclined Plane

Used to control acceleration

1) Set up "tilted" coordinate system


2) calculate components of forces

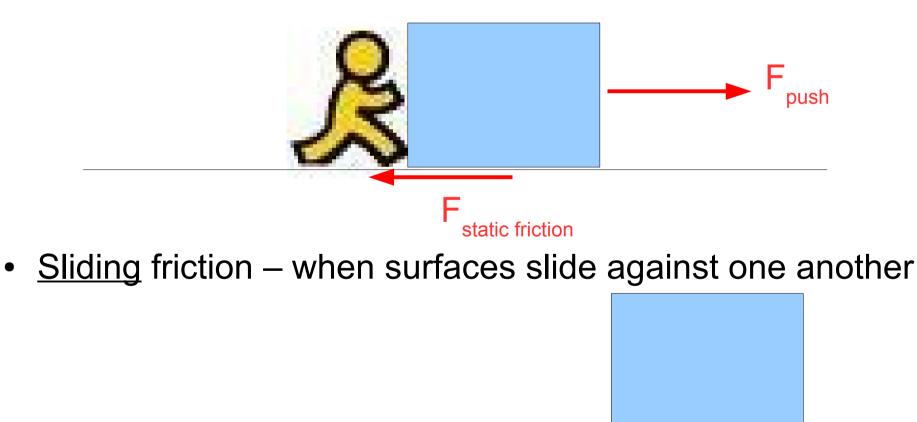
3) apply Newton's 2nd Law

4) calculate acceleration of block

Friction and Air Resistance

- Friction and air resistance are forces
 - Just like gravity or a push with your hand
 - These forces come from atoms rubbing against each other at the microscopic level
- Often these forces <u>oppose</u> motion
 - Example: Air resistance on a bike ride
- Sometimes these forces create motion
 - <u>Examples</u>:
 - Walking
 - Driving a car
 - Sailboat

F

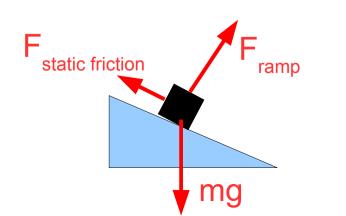

riction

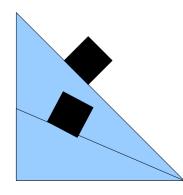
riction

air

Friction – A Closer Look

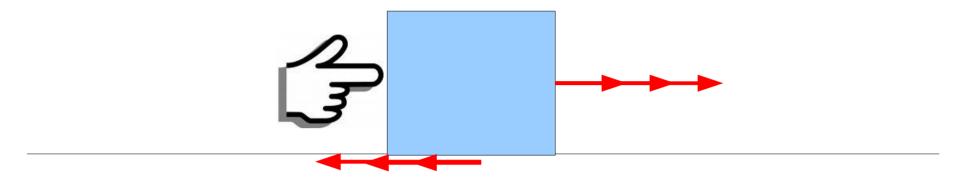
- There are two basic types of friction:
- Static friction holds objects still


sliding friction


Static Friction

 Exerts a force <u>exactly</u> strong enough to balance out other forces and keep an object from moving

 Static friction has a <u>limit</u> – it can only balance so much force before giving in and allowing the object to slide



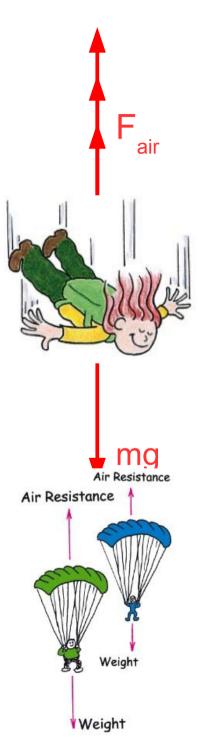
Sliding Friction

- Also called <u>kinetic</u> friction
 - "Kinetic" means "in motion"
- Strength of friction force depends on size of "normal force"
- Amazingly, the force of sliding friction does <u>NOT</u> depend on:

Which is Stronger – Static Friction or Sliding Friction?

- Imagine slowly increasing $\mathrm{F}_{_{\mathrm{push}}}$ until block starts to slide

- This tells us the limit of static friction


- If F_{sliding} > F_{static}
 - Block would stop immediately
 - <u>Can't</u> be true!

<u>Air Resistance – A Closer Look</u>

- When moving through air, an object must "push" air molecules out of the way
 - The air molecules push back this is air resistance!
- How big is the force of air resistance?
 - How many air molecules does an object push?
- Speed
 - Faster objects push more molecules more air resistance
- Width of object
 - Wide objects must push more air molecules out of the way
 - This is why rockets are designed to be thin

Terminal Velocity

- Start with a constant force (like gravity) accelerating an object through the air
 - As the object gets faster, the force of air resistance gets greater
- Eventually the air resistance force is big enough to balance the weight
 - When this happens, the net force is zero
 - So the acceleration will be zero!
 - The object will move at a constant speed called its "terminal velocity"
 - The terminal velocity can be adjusted by adjusting the width and/or mass of the object

<u>Summary</u>

• Newton's Second Law: F_{net} = ma

- Forces <u>cause</u> acceleration
 - Mass <u>resists</u> acceleration
- Weight = mg

- Friction and air resistance are forces!
 - Can resist acceleration of objects or cause it